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ABSTRACT  
 
An associative ring is called 2-primal if its prime radical contains every 
nilpotent element of the ring ( equivalently, if every minimal prime ideal of 
the ring is completely prime ) and It is called a strongly 2-primal if every 
prime ideal of the ring is completely prime. Some results, old and new ones, 
connected with astrongly 2-primal rings and 2-primal rings are obtained. Also 
several new questions related to these rings are discussed.  
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GÜÇLÜ 2-PRİMAL VE 2-PRİMAL HALKALAR ÜZERİNE 

 
ÖZET 
 
R  birleşmeli bir halka olsun. Eğer R  nin her prime (asal) radikali halkanın 
tüm nilpotent elemanlarını kapsıyorsa R  halkasına 2-primal halka adı verilir. 
Bu çalışmada 2-primal ve güçlü 2-primal ( )/()/( IRNIRP  ) halkalarla 
ilgili bazı yeni sonuçlar elde edilmiştir. 
 
Anahtar Kelimeler: Güçlü 2 primal halka ve primal halka 

 
1. INTRODUCTION 
 
Throughout this paper, we assume that R  is an associative ring ( not 
necessarily commutative ) with unity. The symbols, “ )(RJ ” will denote 
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Jacobson radical, “ )(RP ” prime radical and “ )(RN ” the set of all nilpotent 
elements in R , respectively.  
Let R be a ring. Then R  is called a 2-primal ring if )()( RNRP   ( see [2] 
). All commutative rings, one-sided Artinian local rings and Reduced rings ( 
i.e. if it contains no nonzero nilpotent elements ) are 2-primal rings. By [6], 
R  is a 2-primal ring if and only if )(/ RPR  is a reduced ring. Following 
[5], a ring R   is called a strongly 2-primal ring if )/()/( IRNIRP   for 
every proper ideal I  of R . All simple domains are strongly 2-primal rings. 
The notions of strongly 2-primal rings and 2-primal rings have been the 
focus of a number of research papers ( see [2,3,4,5,6,7] ). 
 
A ring R  is called right duo if every right ideal of R  is two sided ideal. 
Clearly, right duo rings are strongly 2-primal rings and so 2-primal rings.  It 
is well known that if D  is a division ring then the power series ring   xD  
is duo     ( every non-zero  one-sided ideal is a two-sided ideal of the form 
 nx   ). 
 
In this paper, we will show that if D  is a division ring, then ]][[xD  is a 
strongly 2-primal ring. Among the other results, we will prove that the ring 
extension of a (strongly) 2-primal ring is again a (strongly) 2-primal ring. 
 
The fundamental definitions and properties used in this paper may be found 
in [1]. 
 
2. THE RESULTS 
 
Clearly, each  strongly 2-primal ring  is a  2-primal ring.  
 
Theorem 2.1. Assume that )(/ RJR  is a semisimple Artinian ring and 

)(RJ  is right or left T-nilpotent (i.e., R  is an one-sided perfect ring ). Then 
R  is a strongly 2-primal ring if and only if R  is a 2-primal ring.  
 
Proof. Let R  be a 2-primal ring. By [ 3, Proposition 3.5 ], )(/ RJR  is a 
finite direct product of division rings. Since R  is an one-sided perfect ring, 
we have )()( RPRJ  . By assumption, [ 2, Proposition 3.3 ] and [ 6, 
Proposition 1.13 ], the ring R  is a strongly 2-primal ring. 
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Remark: Recall that R  is a 2-primal ring if and only if )(/ RPR  is a 
subdirect product of reduced rings if and only if )(/ RPR  is a subdirect 
product of domains. Hence; 
 
Theorem 2.2. Let R  be a von Neumann regular ring. If R  is a strongly 2-
primal ring (if and only if R  is a 2-primal ring), then R  is a subdirect 
product of division rings.  
 
Proof. Let R  be a von Neumann regular ring. Hence R  is a 2-primal ring, 
and so R  is a subdirect product of domains by Remark. Since R  is a von 
Neumann regular ring, IR /  is a division ring for minimal prime ideal I  of 
R . 
 

Let R  be a ring and X  any set of commuting indeterminates over R . 
 
Theorem 2.3.  Let R  be a ring and n be a positive integer. 
(1.)  If R  is a 2-primal ring, then ][xR  is a 2-primal ring. 
(2.)  R is a 2-primal ring if and only if ][/][ xRxxR n  is a 2-primal ring. 
(3.) R  is a strongly 2-primal ring if and only if ][/][ xRxxR n  is a strongly 
2-primal ring. 
(4.) R  is a 2-primal ring if and only if ]][[/]][[ xRxxR n  is a 2-primal ring. 
(5.) R  is a strongly 2-primal ring if and only if ]][[/]][[ xRxxR n  is a 
strongly 2-primal ring. 
 
Proof.  (1.)  See [ 2, Proposition 2.6 ]. 
(2.)  Note that ][/][ xRxxxR n  is nilpotent and 

 ])[/][(][/][ xRxxRPxRxxxR nn  ][/])[)(( xRxxxRRP n . Let S  
denote the set of minimal prime ideals of R . We consider the one to one 
map SxRxxxRS n  ][/])[( . It is easy to see that 

])[/])[/((][ xRxxxRSxR n  is isomorphic to SxRxxxR n /])[/][( . Now, 
by Remark, proof is obvious. 
(3.) We consider the one to one map )(][/])[)(( RPxRxxxRRP n  . 
Since ])[/])[)(/((])[/][( xRxxxRRPxRxxR nn   is isomorphic to 

)(/ RPR , the proof is clear by Remark. 
(4.) Similar to (2). 
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(5.) Similar to (3). 
 
In [ 2, Example 3.13 ], they shown that polynomial ring over division 
rings need not be a strongly 2-primal ring. 
 
Theorem 2.4. Let D  be a division ring. Then ]][[xD  is a strongly 2-primal 
ring.  
 
Proof. Let D  be a division ring. Because ]][[xD  has any non-zero prime 
ideal such that xxD ]][[ , we have two prime factor rings such that 

xxDxD ]][[/]][[  and }0/{]][[xD . By [ 2, Proposition 3.5 ] and [ 6, 
Proposition 1.13 ], ]][[xD  is a strongly 2-primal ring. 
 
Let R  and S  be two rings. ),( SRT  ring extension is defined by  

),( SRT















 SsRr
r
sr

,:
0

 

with the usual operations ),)(,( 2211 srsr ))()(,( 212121 rfssrfrr  , 
where SRf :  is a ring homomorphism. 
 
Theorem 2.5.  (1.)  If R  is a 2-primal ring, then ),( SRT  is a 2-primal 
ring.  
(2.) If R  is a strongly 2-primal ring, then ),( SRT  is a strongly 2-
primal ring.  
 
Proof. (1.) Let R  be a 2-primal ring. Since )),((/),( SRTPSRT  is 
isomorphic to )),((/ SRTPR , by [ 2, Proposition 2.2 ], then ),( SRT  is a 
2-primal ring. 
(2.) Similar to (1). 
 
Questions: 1. Is a subdirect product of 2-primal rings also 2-primal ring ? ( 
[2] ) 
2. Is a subdirect product of strongly 2-primal rings also strongly 2-primal 
ring ? 
3. Assume ][xR  is a strongly 2-primal ring. Is ],[ 1xxR  strongly 2-primal 
ring? 
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