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Abstract 

In the simple task assignment problem, at most one task should be assigned to each agent; this 

constraint is relaxed in the multiple task assignment problems. The goal of the well-known Generalized 

Assignment Problem is to assign tasks to agents such that the capacity of the agent does not exceed its 

limits as it minimizes the total cost. In this study we present a novel approach to solve the general 

assignment problem by using the hypergraphs. Hypergraphs can be considered as the generalization of 

the graphs in such way that an edge can connect any number of vertices, and can be seen as the set 

systems. In the hypergraph multi-assignment problem, we are looking for a cost minimizing solution to 

tasks assignment to the agents which are the individual hyperedges. For this purpose, we first 

determine the tasks as hyperedges and then obtain the vertex cover of the simple graph representation 

of a hypergraph. Amongst the all possible covers, we choose the cost minimizing one as the solution. 

 
Genelleştirilmiş Atama Probleminin Hypergraf Çözümü ve Uzaysal Veri 
Kümelerine Uygulaması 
 
 

Anahtar kelimeler 

Genelleştirilmiş Atama 

Problemi; Hypergraflar, 

Delaunay Üçgenlemesi, 

Uzaysal Veri Kümeleri 

Özet 

Basit atama probleminde, her bir etkene en fazla bir iş atanmaktadır; bu kısıtlanış genelleştirilmiş 

atama problemlerinde gevşetilmiştir. Oldukça iyi bilinen Genelleştirilmiş Atama Probleminin hedefi 

etkenlere iş atarken toplam minimum maliyeti minimumlaştırırken etkenlerin kapasitelerinin 

limitlerini geçmemesini sağlamaktır. Bu çalışmada Genelleştirilmiş Atama Probleminin çözümü için 

hypergraflar kullanılarak orijinal bir yöntem verilmiştir. Hypergraflar, bir ayrıt herhangi sayıda tepeyi 

içerecek şekilde grafların bir genelleştirilmesi olarak ele alınabilir ve küme sistemleri olarak görülebilir. 

Hypergraf multi-atama probleminde, etkenleri ayrı hyperayrıtlar olarak alıp maliyeti minimize eden 

çözümler aranmaktadır. Bu amaçla, ilk olarak işleri hyperayrıt olarak belirleyip daha sonra hypergrafın 

bir basit graf gösteriminde tepe örtü kümesini elde etmekteyiz. Bütün örtü kümeleri içerisinde 

maliyeti minimize edeni çözüm olarak kabul ederiz. 

© Afyon Kocatepe Üniversitesi 

 
 

1. Introduction 

The Generalized Assignment Problem (GAP) is 

emerging when a set of tasks needs to be assigned 

to a set of agents in a way that the availability of 

the agent and the multiple resources consumed by 

him permit the assignment. Rather than the simple 

assignment problems, the agent consumes not 

unique but a variety of resources to perform the 

task. A task can be assigned to any number of 

agents, henceforth to determine the optimum 

many agents that minimize the cost of all tasks 

need to be completed becomes an important 

optimization problem. In other words, GAP is the 

problem of assigning 𝑛 different tasks to 𝑚 agents 

while the total cost of the assignment is minimized. 

Various types of generalized GAP such as dynamic 

multi-resource GAP (Shtub and Kogan 1998, 

Privault and Herault 1998), multi-objective GAP 
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(Subtil et al. 2010), and the equilibrium GAP (Liu et 

al. 2012) are studied by several researchers. Fisher 

and Jaikumar (1981) briefly showed that GAP is a 

NP-hard problem and many different solution 

methods have been developed by using branching, 

cutting and bounding algorithms (Avella et al. 2010, 

Fisher et al. 1986, Nauss 2003, Ross and Soland 

1975, Savelsbergh 1997). 

 

In this study, we present a new method to solve 

GAP by using the edge cover of a hypergraph. 

Hypergraphs can be considered as the 

generalization of the simple graphs as their edges 

can involve more than two vertices. Since they 

include robust relationships in the model of a 

system, they serve as an efficient tool to model 

complex systems.  From image processing (Yu et al. 

2012), cybernetics (Zhang et al. 2014), to machine 

learning (Yu et al. 2014, Zhang et al. 2012), 

hypergraphs can be applied to several areas. Since 

hypergraphs provide more flexible and detailed 

modelling benefits rather than the simple graphs, 

they are also commonly used in modeling spatial 

data sets. Cherng and Lo (2001) showed that 

hypergraphs are useful to determine significant 

relations among the data points in data structure.  

 

In the study of geographical information systems 

spatial data set play an important role. Spatial data 

sets can be seen as an information system where 

each data represented to identify the location of 

features. These representations usually involve the 

spatial coordinates of the features. However they 

are not only restricted to the geographic locations, 

the circuit chips or the point clouds of the 

geometric processing can also be considered as 

spatial data sets (Balcı et al. 2016). Therefore, the 

representation of such spatial relations can be 

done by the closeness relationship that is the 

Delaunay Triangulation of such data sets. 

 

This paper is organized as follow: In Section 2 we 

give the mathematical description of the GAP and 

its representation by hypergraphs. We also present 

how to represent a spatial data set by using the 

hypergraphs. In Section 3, we give a method to 

obtain the neighborhood graph of a hypergraph. 

This neighborhood graph yields the solution of the 

GAP as a hyperedge cover which is a maximal 

vertex cover of the simple graph. We also give our 

method in a Step Algorithm form, and study the 

method for randomly generated spatial data sets in 

Section 4 in details. In Section 5, we apply our 

method and obtain consistent results to 112 

Emergency Health Service Stations of Muğla. 

 

2. Description of the Problem 

The problem addressed in this paper is to assign 

tasks to the agents which have spatial coordinates. 

These spatial coordinates can be interpreted as the 

location, height, and the other geometric 

information about the agents. Minimizing the total 

cost is the objective. If the capacity of the agent 

exceeds its limits, the task is assigned as the 

spatially next available agent is involved. Soft 

constraints on agents in this problem are omitted. 

 
More formally, the GAP for spatial data sets 

considered here can be stated as follows. A set of 

agents 𝐴 = {𝑎1, … , 𝑎𝑛}  needs to be assigned a task 

𝑡, where 𝑡 ∈  𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚𝑎𝑥}. This assignment 

problem is formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶  ∑ caxa
𝑎∈𝐴

 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  ∑ xa ≥ 1

𝑎∈𝑘

   𝑓𝑜𝑟  𝑘 ∈ 𝑇 

                        𝑥𝑎 ∈ {0,1}. 

where the cost matrix [𝑐𝑖] is 1 × 𝑡𝑚𝑎𝑥 type. 

 

By considering the agents as vertices and tasks as 

hyperedges aforementioned GAP can be modelled 

by hypergraphs. Formally, a hypergraph 𝐻 is given 

with the tuple (𝑉, 𝐸). Here 𝑉 is the set of vertices 

and 𝐸 is the set of non-empty subsets of 𝑉.  

 

One of the effective applications of Hypergraphs is 

to the model spatial data sets. These locations can 

be identified as the city locations, construction or 

natural features, emergency services, or even the 
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location of transportation stops. Beside these 2 

Dimensional examples, identification of the 

location of features may involve also the 3 

Dimensional data sets which includes the spatial 

locations and their heights. To represent these 

kinds of data sets by hypergraphs, we first use the 

dual of the Voronoi region of the corresponding 

data set, which are called Delaunay Triangulation 

for 2D case and Delaunay Tetrahedralization for 3D 

case. 

 

In the case of 2D triangulations of points 𝑃2 ⊂ ℝ
2, 

the triangulation 𝐷(𝑃2) in such way that no point is 

inside the circum-circle of any triangle in 𝐷(𝑃2) is 

called Delaunay Triangulation. 𝐷(𝑃2) ensures the 

circumcircle associated with each triangle contains 

no other point in its interior. By following the same 

idea, for a set 𝑃3 ⊂ ℝ
3 of points in the 3𝑑 

Euclidean space, Tetrahedralization 𝐷(𝑃3) such 

that no point and edge in 𝑃3 is inside the circum-

sphere of any tetrahedron in 𝐷(𝑃3) is called the 

Delaunay Tetrahedralization. For sure this idea can 

be extended in more general case.  For a set 𝒫 of 

points in the 𝑑-dimensional Euclidean space, the 

same triangulation procedure can be executed by 

using hyperspheres. 

 

Hypergraph representation of a Delaunay 

Triangulation has been extensively studied and can 

be defined as follows: 

Definition 2.1. Let 𝑉 be a set of vertices in 𝑑-

dimensional Euclidean space. The Delaunay 

Triangulation is a hypergraph with (𝑉, 𝐸) with 𝐸 is 

the set of (𝑑 − 1)-simplices that have non-empty 

balls touching their vertices, such that 𝐸 forms 

non-overlapping 𝑑-simplices.  

3. Method 

In this section we represent the above GAP for 

spatial data sets. These data sets are modelled by 

the hypergraphs which are obtained from the 

Delaunay Triangulation. The solution of the GAP is 

given as a vertex cover of the hypergraph. To reach 

this goal we first give a definition to represent a 

hypergraph as follows: 

 

Definition 3.1. Let a hypergraph 𝐻 = (𝑉, 𝐸) is 

given. The neighborhood graph 𝐺𝐻 of 𝐻 is a simple 

graph with the set of vertices 𝑉 and the set of 

edges defined by the following formation rule: 

𝑣𝑖𝑣𝑗  is an edge in 𝐺𝐻 if and only if ∃ 𝑒𝑘 ∈ 𝐸 such 

that 𝑣𝑖 ∈  𝑒𝑘 ∧ 𝑣𝑗 ∈  𝑒𝑘. 

 

To represent a neighborhood graph of a 

hypergraph with an adjacency matrix is another 

computational task to be completed. The following 

definitions which are studied deeply in (Balcı et al. 

2016) are served to construct a neighborhood 

graph in 𝒪(|𝐸||𝑉|2)  time complexity. 

 

Definition 3.2. Let 𝐻 = (𝑉, 𝐸) be a hypergraph 

with |𝑉| = 𝑛. The matrix 𝐵𝑒𝑘 = [𝑎𝑖𝑗]𝑛×𝑛
 whose 

entries are 

𝑎𝑖𝑗 = {
1, {𝑣𝑖, 𝑣𝑗} ⊂ 𝑒𝑘   𝑓𝑜𝑟 𝑖 ≠ 𝑗

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

is called the neighborhood matrix of the edge 

𝑒𝑘 ∈ 𝐸 (Balcı et al. 2016). 

 

Definition 3.3.  Let 𝐻 = (𝑉, 𝐸) be a hypergraph 

with |𝑉| = 𝑛 and  |𝐸| = 𝑚. The simple graph 𝐺𝐻 

with the adjacency matrix 

𝐴𝐺𝐻 = 𝐵𝑒1⨁𝐵𝑒1⨁…⨁𝐵𝑒𝑚  

where ⊕  is the element-wise Boolean sum of 

neighborhood matrices is called the neighborhood 

graph of the hypergraph 𝐻 (Balcı et al. 2016). 

 

Lemma 3.1. A vertex cover of 𝐺𝐻 is a hyperedge 

cover of 𝐻. 

Proof. Since the hyperedges of 𝐻 involve the 

vertices and the vertex cover 𝐺𝐻, which is a set of 

vertices such that each edge of the 𝐺𝐻 is incident 

to at least one vertex of the set, can be obtained by 

the neighborhood of the vertices; the adjacent 

vertices in 𝐺𝐻 are equivalent to the adjacent 

hyperedges in 𝐻. Henceforth, by the definition of a 

vertex cover, a vertex cover of 𝐺𝐻 is an edge cover 

of 𝐻. 

 

The method we present in this study can be 

executed as the given Step Algorithm: 
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Input:  𝐻 = (𝑉, 𝐸) from the  𝐷(𝒫) 

Step 1: Obtain the neighborhood graph 𝐺𝐻 

Step 2: Find the maximal independent set of 

𝐺𝐻 

Step 3: Obtain the vertex cover as the 

complement of the independent set 

Step 4: Determine the set of all possible 

hyperedges contain the vertex cover 

Step 5: The hyperedges amongst the ones 

obtained in Step 4 with the minimum 

cost are the solutions 

 

The construction of the simple graph 

representation is studied in (Balcı et al. 2016) with 

details. In graph theory, independent set is the set 

of vertices that does not include any two adjacent 

vertices, and a maximal independent set is an 

independent set that is not a subset of any other 

independent set. There are several approaches to 

approximate the maximal independent set of a 

graph. In this study, we approximate the maximal 

independent set by using the Paull-Unger 

Algorithm. Since this algorithm depends on the 

finite automata theory, it is not suitable for the 

large data sets. However, in practice, the numbers 

of agents in the spatial models are expected to be 

suitable for using the Paull-Unger algorithm. For 

instance; if the agents are considered as the 

emergency services and the task are as the 

responses, one would not to activate whole agents 

in the country but would do for the regional ones. 

To determine maximal independent set plays key 

role to determine vertex covers. The well-known 

theorem about the independent sets states that 

the complement of the maximal independent set in 

an undirected simple graph yields a vertex cover. 

Once vertex cover is determined, by using Lemma 

3.1, it is possible to obtain the all hyperedge covers 

of the hypergraph model of the data set. Amongst 

them, the ones with the minimum cost is the 

solution of the Hypergraph Multi-Assignment 

Problem. 

 

In Table 3.1, we present the computational times 

of our method with Bees Algorithm (Özbakır et al, 

2010), Tabu Search Algorithm (Dıaz ve Fernández, 

2001), and Differential-Evolution Algorithm (). Test 

case is type gap-b which is obtained from the OR-

library (Int Kyn. 2). Bee, Tabu, DE, HG are the 

abbreviations for Bee’s Algorithm, Tabu Search 

Algorithm, Differential Evolution Algorithm, and 

Hypergraph solution that we present in this study, 

respectively. 

 

 

  Methods 

m n BEE TABU DE HG 

5 100 5.97 95.8 30.56 0.40 

5 200 45.99 97.2 50.89 1.32 

10 100 0.36 160 60.25 2.22 

10 200 315.04 339.1 102.4 31.67 

20 100 1.32 389.8 212.5 51.91 

20 200 28.65 465.4 350.5 404.68 

Table 4.1. Computational Experience for Gapb type GAP.  

 

It can straightforwardly be seen from Table 4.1 the 

algorithm we present in this study is 

computationally efficient for the relatively small 

sized problems.  

4. Examples  

In this section we give the interpretation of our 
solution for 2 and 3 dimensional spatial data sets. 
First scenario is agents do not exceed their capacity 
for the given task. Second is for the case of the 
exceeding the capacities, that is the next available 
agent is included the task. The next available agent 
may be determined by the nearest agent to the 
task in the means of Hausdorff distance. However, 
to keep the initial topology between the agents, we 
consider the nearest agents amongst the element 
of Delaunay Triangulation which has an adjacent 
(𝑑 − 1)-simplices. 
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4.1.1 2D Spatial Data Sets 
 

Let us consider coordinates of randomly generated 
20 agents in ℝ2 as in Figure 4.1.1. 

 
Figure 4.1.1. Randomly generated 2 Dimensional spatial 

data points 

 

The neighborhood graph of this hypergraph is 
given in Figure 4.2.2 with the agents numbered 
from 1 to 20. For the sake of simplicity let us 
consider 𝑐𝑖 = 𝑖. 
 

 
Figure 4.1.2. Representation of the hypergraph in simple 

form that is obtained from the randomly generated 

spatial data points. 

 

 

The vertex cover set of 𝐺𝐻 is 

{
 

 
{𝑎1, 𝑎4, 𝑎7, 𝑎9, 𝑎10, 𝑎11, 𝑎12, 𝑎13,

𝑎15, 𝑎16, 𝑎18, 𝑎19, 𝑎20},
{𝑎1, 𝑎2, 𝑎4, 𝑎7, 𝑎9, 𝑎10, 𝑎11, 𝑎12, 𝑎13

𝑎16, 𝑎18, 𝑎19, 𝑎20} }
 

 
. 

As a result, the tasks with minimum cost can be 

obtained as 

𝑒1, 𝑒2, 𝑒3, 𝑒5, 𝑒10, 𝑒12, 𝑒14, 𝑒15, 𝑒16, 𝑒17, 𝑒24, 

 which is an hyperedge cover set of 𝐻.  

 

In the case of limit exceeding, the same set of 
agents yield the neighborhood graph that is given 
in Figure 4.1.3. 

 

 
Figure 4.1.3. Neighborhood graph representation of the 

hypergraph when the limits of the agents exceed and 

the next available agent is included to the task. 

 
In this case, the vertex cover set is 

𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎9, 𝑎10, 𝑎11, 𝑎13,
𝑎14, 𝑎15, 𝑎16, 𝑎17, 𝑎18, 𝑎19, 𝑎20 

 

and corresponding hyperedge cover with minimum 
cost is 

𝑒1
′ , 𝑒2

′ , 𝑒3
′ , 𝑒4

′ , 𝑒9
′ , 𝑒15

′ , 𝑒17
′ , 𝑒22

′ , 𝑒25
′  

where 𝐸 = {𝑒𝑖
′  ∶   |𝑒𝑖

′| = 4, 1 ≤  𝑖 ≤  39}. 
 
4.1.2 3D Spatial Data Sets 
 

Now, consider for the coordinates of randomly 
generated 20 agents in ℝ3 as in Figure 4.2.1. 
 

 
Figure 4.2.1. Randomly generated 3 Dimensional spatial 

data points 

 

The Delaunay Tetrahedralization of the generated 

points is given in Figure 4.2.2. 
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Figure 4.2.2. Delaunay Tetrahedralization that yields the 

hypergraph with 179 hyperedges. 

 

The neighborhood graph  𝐺′𝐻 is in Figure 4.2.3 and 

the vertex covers are 

{
 

 
{𝑏1, 𝑏2, 𝑏3, 𝑏6, 𝑏7, 𝑏8, 𝑏9, 𝑏10, 𝑏11, 𝑏12,

𝑏13, 𝑏14, 𝑏15, 𝑏16, 𝑏19},
{𝑏1, 𝑏2, 𝑏3, 𝑏5, 𝑏7, 𝑏10, 𝑏11, 𝑏12, 𝑏13,

𝑏14, 𝑏15, 𝑏16, 𝑏18, 𝑏19, 𝑏20} }
 

 
 

 
Figure 4.2.3. Representation of the hypergraph in simple 

form that emerging from the Delaunay 

Tetrahedralization of the randomly generated 3D spatial 

data points. 

 

The corresponding hyperedges with minimum 

costs are 
{16, 19, 5, 9} {3, 18, 14, 7} {11, 15, 3, 7}

{13, 9, 20, 12} {4, 15, 1, 10} {6, 16, 5, 2}.
 

 

Now let us consider the case of agents limits 

exceed, hence we include the nearest agents to the 

tasks and obtain 86 hyperedges. The same set of 

agents yield the neighborhood graph that is given 

in Figure 4.2.4. 

 
Figure 4.2.4. Neighborhood graph representation of the 

hypergraph of the 3D spatial data set when the limits of 

the agents exceed and the next available agent is 

included to the task. 

 

The vertex covers of this neighborhood graph are 

{
 

 
{𝑏1
′ , 𝑏2

′ , 𝑏3
′ , 𝑏5

′ , 𝑏7
′ , 𝑏9

′ , 𝑏10
′ , 𝑏11

′ , 𝑏13
′ ,

𝑏14
′ , 𝑏15

′ , 𝑏16
′ , 𝑏17

′ , 𝑏19
′ },

{𝑏2
′ , 𝑏3

′ , 𝑏4
′ , 𝑏6

′ , 𝑏7
′ , 𝑏9

′ , 𝑏10
′ , 𝑏11

′ , 𝑏13
′ ,

𝑏14
′ , 𝑏15

′ , 𝑏16
′ , 𝑏17

′ , 𝑏18
′ , 𝑏19

′ , 𝑏20
′ } }

 

 

. 

 
The corresponding hyperedges with minimum 
costs are 
{9, 13, 16, 19, 20} {9, 12, 13, 19, 20} {5, 7, 9, 16, 19}

{2, 9, 16, 19, 20} {3, 7, 11, 14, 18} {3, 7, 11, 14, 15}

{3, 4, 7, 11, 15} {3, 7, 10, 11, 15} {3, 6, 7, 11, 14}
 

 

5. A Local Application   

In this Section, we apply our method to the data 
sets of Turkish Republic, Ministry of Health, 112 
Emergency Health Service Stations of Muğla. The 
spatial coordinates include the latitude and the 
longitude of each station for the 2D spatial data 
sets and the altitude for the 3D spatial data sets. 
Each coordinates are obtained by using Google 
Earth and marked as in Figure 5.1.1.  
 
The cost of each hyperedge that emerge from the 
Delaunay Triangulation is calculated as 

𝑐𝑖 =∑
1

3𝑑𝑘 + 2𝑝𝑘 + 𝑡𝑘

𝑙

𝑘=1

, 

where 𝑑𝑘 , 𝑝𝑘 , 𝑡𝑘  are the numbers of doctors, 
paramedics, health technician of 𝑘-th station that 
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is in the 𝑖-th hyperedge, and 𝑙 is the cardinality of 
the hyperedges. The updated numbers can be 
found in (Int Kyn. 1). 
 
To obtain more accurate results, we discard the 
hyperedge of the related triangle with the longest 
edges.  
 

 
Figure 5.1.1. The map of 112 Emergency Health Service 
Stations of Muğla. The more detailed map can be seen 
in (Int Kyn. 1). 
 

The corresponding neighborhood graph of 2D and 
3D data sets are shown in Figure 5.1.2 and Figure 
5.1.3, respectively. 
 

  
Figure 5.1.2. The neighborhood graph of 2D data sets 
that obtained from the latitude-longitude coordinates of 
112 Emergency Health Service Stations. 
 

 
Figure 5.1.3. The neighborhood graph of 3D data sets 
that obtained from the latitude-longitude-altitude  
coordinates of 112 Emergency Health Service Stations. 

 
As a result, the hyperedge cover of 2D data sets 
involves the stations 
 
Fethiye 1, Fethiye 5, Fethiye 6, Dalaman 1, Köyceğiz 
2, Marmaris 1, Datça 1, Ula 2, Muğla 6, Kavaklıdere 
1, Milas 1, Milas 6, Bodrum 1, 
 
and the hyperedge cover of 3D data sets involves 
the stations 
 
Fethiye 2, Fethiye 3, Marmaris 1, Marmaris 4, 
Datça 1, Ula 1, Muğla 3, Milas 1, Milas 6 
 
which are with the minimum cost. 
 

6. Conclusions  

We have presented an inventive method which 
solves GAP by using the hypergraph theory in this 
paper. 
 
The corresponding hypergraph is basically obtained 
from the triangulation of the data set. Its 
hyperedges involve the interrelation of 𝑛-D data 
points. Henceforth, the method is also effective 
when a new dimension or a new agent is added to 
the tasks. 
 
The hyperedge cover which is congruent to the 
maximal vertex cover of its neighborhood graph 
becomes solution for the purposed GAP. One of 
the greatest advantage of the method is it can be 
extended to any finite dimensional data sets by 
using the generalized triangulations. We also 
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applied our method to a real data set of  
emergency service stations and obtained the 
consistent results. These results can be re-modeled 
respect to the updated data. 
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