AKU J. Sci. Eng. 17 (2017) 021301 (479-487)

AKÜ FEMÜBİD **17** (2017) 021301 (479-487) DOI: 10.5578/fmbd.57229

Araştırma Makalesi / Research Article

Approximately Semigroups and Ideals: An Algebraic View of Digital Images

Ebubekir İnan

AdıyamanUniversity, Faculty of Arts and Sciences, Department of Mathematics, 3-34, 02040, Adıyaman, Turkey

e-posta:einan@adiyaman.edu.tr This article dedicated to honor of July 15 martyrs in Turkey.

Geliş Tarihi: 22.12.2016 ; Kabul Tarihi: 09.08.2017

Anahtar kelimeler	Özet
Proksimiti uzaylar;	Bu makalede proksimal relator uzaylarında yaklaşımlı yarıgruplar ve ideallere giriş yapılmıştır. Tanımsal
Relator uzaylar;	proksimiti bağıntısı ile birlikte dikkate alınan dijital görüntülerde yaklaşımlı yarıgrup ve ideal örnekleri
Tanımsal yaklaşımlar;	verilmiştir. Bundan başka, nesne tanımlaması homomorfizması kullanılarak tanımsal yaklaşımların bazı
Yaklaşımlı yarıgruplar.	özellikleri incelenmiştir.

Yaklaşımlı Yarıgruplar ve İdealler: Dijital Görüntülerin Cebirsel İncelenmesi

Keywords Proximity spaces; Relator spaces; Descriptive approximations; Approximately semigroups.

Abstract

In this article, approximately semigroups and ideals in proximal relator spaces have been introduced. In addition to, some examples of approximately semigroups and ideals in digital images endowed with descriptive proximity relation have been given. Furthermore, some properties of descriptively approximations using object descriptive homomorphism have been obtained.

© Afyon Kocatepe Üniversitesi

1. Introduction

The concept of ordinary algebraic structures are consist of a nonempty set of abstract points with one or more binary operations which are required to satisfy certain axioms such as a groupoid is an algebraic structure (A, \circ) consist of a nonempty set A and a binary operation " \circ " defined on A (Clifford and Preston,1964). And binary operation "o" must be closed in A whereas in proximal relator spaces, the sets are composed of non-abstract points instead of abstract points and these points are describable with feature vectors in. Descriptively upper approximation of a nonempty set is obtained by using the set of points composed by the proximal relator space together with matching features of points and these are the basic tools for defining algebraic structures on proximal relator

spaces and binary operations on any groupoid A in proximal relator space must be closed in descriptively upper approximation of A.

Moreover an example of approximately semigroup on digital images endowed with descriptive proximity relation has given.

2. Preliminaries

Let *X* be a nonempty set. Family of relations \mathcal{R} on a nonempty set *X* is called a *relator*. The pair (*X*, \mathcal{R}) (or *X*(\mathcal{R})) is a relator space which is natural generalisations of uniform spaces (Szaz, 1987). If we consider a family of proximity relations on *X*, we have a proximal relator space (*X*, \mathcal{R}_{δ}) (*X*(\mathcal{R}_{δ})). As in (Peters, 2016), (\mathcal{R}_{δ}) contains proximity relations namely, Efremovic proximity δ (Efremovic 1951;1952), Lodato proximity (Lodato, 1962), Wallman proximity, descriptive proximity δ_{Φ} in defining $\mathcal{R}_{\delta_{\Phi}}$ (Peters, 2013;Peters et al. 2014).

In this article, we consider the Efremovĩ ϕ roximity δ (Efremovĩc 1952) and the descriptive proximity δ_{Φ} in defining a descriptive proximal relator space (denoted by $(X, \mathcal{R}_{\delta_{\Phi}})$).

An Efremovic proximity δ is a relation on $\mathbf{2}^X$ that satisfies

1. $A\delta B \Rightarrow B\delta A$.

2.
$$A\delta B \Rightarrow A \neq \emptyset$$
 and $B \neq \emptyset$.

3. $A \cap B \neq \emptyset \Rightarrow A\delta B$.

4. $A\delta(B \cup C) \Leftrightarrow A\delta B$ or $A\delta C$.

5. $\{x\}\delta\{y\} \Leftrightarrow x = y$.

6. EF axiom. $A \underline{\delta} B \Rightarrow \exists E \subseteq X$ such that $A \underline{\delta} E$ and $E^c \underline{\delta} B$.

Lodato proximity (Lodato, 1962) swaps the EF axiom 2. for the following condition:

 $A\delta B$ and $\forall b \in B$,

$$\{b\}\delta C \Rightarrow A\delta C.$$
 (Lodato Axiom)

In a discrete space, a non-abstract point has a location and features that can be measured (Efremovĭc 1952; Kovĭa, 2011). Let X be a nonempty set of non-abstract points in a proximal relator space (X, $\mathcal{R}_{\delta_{\Phi}}$) and let $\Phi = \{\phi_1, ..., \phi_n\}$ a set of probe functions where aprobe function $\Phi: X \to \mathbb{R}$ represents a feature of a sample point in picture. а Let $\Phi(x) = (\phi_1(x), \dots, \phi_n(x)), n \in N$ be an object description denote a feature vector for x, which provides a description of each $x \in X$. To obtain a descriptive proximity relation (denoted by δ_{Φ}), one first choose a set of probe functions.

Definition 2.1. (Set Description, Naimpally and Peters, 2013) Let X be a nonempty set of nonabstract points, Φ an object description and A a subset of X. Then the set description of A is defined as

$$\mathcal{Q}(A) = \{\Phi(a) \colon a \in A\}.$$

Definition 2.2. (Descriptive Set Intersection, Naimpally and Peters, 2013; Peters and Naimpally, 2012) Let X be a nonempty set of non-abstract points, A and B any two subsets of X. Then the descriptive (set) intersection of A and B is defined as

$$A \cap B = \{x \in A \cup B : \Phi(x) \in Q(A) \text{ and } \Phi(x) \in Q(B)\}.$$

Definition 2.3. (Peters, 2013) Let X be a nonempty set of non-abstract points, A and B any two subsets of X. If $Q(A) \cap Q(B) \neq \emptyset$, then A is called descriptively near B and denoted by $A\delta_{\Phi}B$. If $Q(A) \cap Q(B) = \emptyset$ then $A = \delta_{\Phi} B$ read as A is descriptively far from B.

Definition 2.4. (Descriptive Nearness Collections, Peters, 2013) Let X be a nonempty set of nonabstract points and A any subset of X. Then the descriptive nearness collection $\xi_{\Phi}(A)$ is defined by

$$\xi_{\Phi}(A) = \{B \in \mathcal{P}(X) \colon A\delta_{\Phi}B\}.$$

(Peters, et al. 2015) Let $(X, \mathcal{R}_{\delta_{\Phi}})$ be descriptive proximal relator space and $A \subset X$, where *A* is consist of non-abstract objects. And let (A, \cdot) and $(Q(A), \circ)$ be groupoids. Let consider the object description Φ by means of a function

$$\Phi: A \subset X \to Q(A) \subset \mathbb{R},$$
$$a \mapsto \Phi(a), a \in A.$$

The object description Φ of A inQ(A) is an object description homomorphism if

$$\Phi(a \cdot b) = \Phi(a) \circ \Phi(b) \text{ for all } a, b \in A.$$

Moreover descriptive closure of a point $a \in A$ is defined by

$$cl_{\Phi}(a) = \{x \in X : \Phi(a) = \Phi(x)\}.$$

Descriptively lower approximation of the set *A* is consist of $a \in A$ which descrition of descriptive closure $Q(cl_{\Phi}(a))$ are subsets of *set description*Q(A). This discovery process leads to the construction of what is known as the descriptively lower approximation of $A \subseteq X$, which is denoted by Φ_*A .

3. Main Results

Definition 3.1. (Descriptively Lower Approximation of a Set) Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space and $A \subset X$. A descriptively lower approximation of A is defined as

$$\Phi_*A = \{a \in A \colon \mathcal{Q}(cl_\Phi(a)) \subseteq \mathcal{Q}(A)\}.$$

Definition 3.2. (Descriptively Upper Approximation of a Set) Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space and $A \subset X$. A descriptively upper approximation of A is defined as

$$\Phi^*A = \{ x \in X \colon x\delta_{\Phi}A \}.$$

Definition 3.3. (Descriptively Boundary Region) Let $Bnd_{\Phi}A$ denote the descriptively boundary region of a set $A \subseteq X$ defined by

 $\Phi_{Bnd}A = \Phi^*A \setminus \Phi_*A = \{x: x \in \Phi^*A \text{ and } x \notin \Phi_*A\}.$

Lemma 3.4.Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space and $A, B \subset X$, then

(i)
$$Q(A \cap B) = Q(A) \cap Q(B)$$
,

(ii) $Q(A \cup B) = Q(A) \cup Q(B)$.

Proof. (i)

$$Q(A \cap B) = \{\Phi(x) : x \in A \cap B\}$$
$$= \{\Phi(x) : x \in A\} \cap \{\Phi(x) : x \in A\}$$
$$= Q(A) \cap Q(B)$$

(ii)

$$Q(A \cup B) = \{\Phi(x) : x \in A \cup B\}$$
$$= \{\Phi(x) : x \in A\} \cup \{\Phi(x) : x \in A\}$$
$$= Q(A) \cup Q(B)$$

Theorem 3.5.Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space and $A, B \subset X$. Then the following statements hold.

- (1) $(\Phi_*A) \subseteq A \subseteq (\Phi^*A)$,
- (2) $\Phi^*(A \cup B) = (\Phi^*A) \cup (\Phi^*B)$,
- (3) $\Phi_*(A \cap B) = (\Phi_*A) \cap (\Phi_*B)$,

(4) If $A \subseteq B$, then $(\Phi_*A) \subseteq (\Phi_*B)$,

(5) If $A \subseteq B$, then $(\Phi^*A) \subseteq (\Phi^*B)$,

(6) $\Phi_*(A \cup B) \supseteq (\Phi_*A) \cup (\Phi_*B)$,

(7) $\Phi^*(A \cap B) \subseteq (\Phi^*A) \cap (\Phi^*B)$.

Proof. (1) Let $a \in \Phi_*A$, then $\mathcal{Q}(cl_{\Phi}(a)) \subseteq \mathcal{Q}(A)$, where $a \in A$. Hence $(\Phi_*A) \subseteq A$. Let $a \in A$ and it is obvious that $\Phi(a) \in \mathcal{Q}(A)$, that is $\Phi(a) \cap \mathcal{Q}(A) \neq$ Øand so $a\delta_{\Phi}A$. Therefore $a \in \Phi^*A$ and then $A \subseteq \Phi^*A$.

By Lemma 3.4. proofs of (2) and (3) are obvious.

(4) Let $A \subseteq B$, then $A \cap B = A$. From statement (3) we have $\Phi_*A = \Phi_*(A \cap B) = (\Phi_*A) \cap (\Phi_*B)$. Hence $(\Phi_*A) \subseteq (\Phi_*B)$.

(5) Let $A \subseteq B$, then $A \cup B = B$. From statement (2) we get $\Phi^*B = \Phi^*(A \cup B) = (\Phi^*A) \cup (\Phi^*B)$. This implies that $(\Phi^*A) \subseteq (\Phi^*B)$.

(6) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, by (4) we have $(\Phi_*A) \subseteq \Phi_*(A \cup B)$ and $(\Phi_*B) \subseteq \Phi_*(A \cup B)$. Hence $(\Phi_*A) \cup (\Phi_*B) \subseteq \Phi_*(A \cup B)$.

(7) We know that $A \cap B \subseteq A$ and $A \cap B \subseteq B$. From statement (5) we have $\Phi^*(A \cap B) \subseteq (\Phi^*A)$ and $\Phi^*(A \cap B) \subseteq (\Phi^*B)$. Thus $\Phi^*(A \cap B) \subseteq (\Phi^*A) \cap (\Phi^*B)$.

Definition 3.6.Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space and let "·" be binary operation defined on X. A subset G of the set of X is called a descriptive approximately groupoid in descriptive proximal relator space if $x \cdot y \in \Phi^*G$, $\forall x, y \in G$.

Suppose that *G* is a *descriptive approximately* groupoid with the binary operation "·" in $(X, \mathcal{R}_{\delta_{\Phi}})$, $g \in G$ and $A, B \subseteq G$. We define the subsets $g \cdot A, A \cdot g, A \cdot B \subseteq \Phi^*G \subseteq X$ as follows:

$$g \cdot A = gA = \{ga: a \in A\},$$
$$A \cdot g = Ag = \{ag: a \in A\},$$
$$A \cdot B = AB = \{ab: a \in A, b \in B\}.$$

Lemma 3.7.Let (X, δ_{Φ}) be descriptive proximity space and $A, B \subset X$. If $\Phi: X \to \mathbb{R}$ is an object descriptive homomorphism, then

$$Q(A)Q(B) = Q(AB).$$

Proof.

$$Q(A)Q(B) = \{\Phi(a)\Phi(b): a \in A, b \in B\} x,$$
$$= \{\Phi(ab): a \in A, b \in B\} = Q(A \xrightarrow{B})$$

Theorem 3.8.Let (X, δ_{Φ}) be descriptive proximity space and $A, B \subset X$. If $\Phi: X \to \mathbb{R}$ is an object descriptive homomorphism, then

$$(\Phi^*A)(\Phi^*B) = \Phi^*(AB)$$

Proof. Suppose that $x \in (\Phi^*A)(\Phi^*B)$, then x = abwith $a \in \Phi^*A$ and $b \in \Phi^*B$. Thus $\Phi(a) \in Q(A)$ and $\Phi(b) \in Q(B)$. Since Φ is an object descriptive homomorphism $\Phi(a)\Phi(b) = \Phi(ab) \in Q(A)Q(B)$ and so by Lemma 3.7. $\Phi(x) \in Q(AB)$, that is $x \in \Phi^*(AB)$. Therefore $(\Phi^*A)(\Phi^*B) \subset \Phi^*(AB)$. Similary we obtain $\Phi^*(AB) \subset (\Phi^*A)(\Phi^*B)$ and so $(\Phi^*A)(\Phi^*B) = \Phi^*(AB)$.

Theorem 3.9Let (X, δ_{Φ}) be descriptive proximity space, $A, B \subset X$. If $\Phi: X \to \mathbb{R}$ is an object descriptive homomorphism, then

$$(\Phi_*A)(\Phi_*B) \subset \Phi_*(AB)$$

Proof. Let $x \in (\Phi_*A)(\Phi_*B)$, then x = ab with $a \in \Phi_*A$ and $b \in \Phi_*B$. Thus $\mathcal{Q}(cl_{\Phi}(a)) \subseteq \mathcal{Q}(A)$, $\mathcal{Q}(cl_{\Phi}(b)) \subseteq \mathcal{Q}(B)$ and so $y \in X$ where $\Phi(a) = \Phi(y) \in \mathcal{Q}(A)$, $\Phi(b) = \Phi(y) \in \mathcal{Q}(B)$. Since Φ is an object descriptive homomorphism $\Phi(a)\Phi(b) = \Phi(ab) = \Phi(y) \in \mathcal{Q}(A)\mathcal{Q}(B)$ and from Lemma 3.7. $\Phi(ab) = \Phi(y) \in \mathcal{Q}(AB)$. Then $\mathcal{Q}(cl_{\Phi}(ab)) \subseteq \mathcal{Q}(AB)$, that is $x = ab \in \Phi_*(AB)$. Consequently $(\Phi_*A)(\Phi_*B) \subset \Phi_*(AB)$.

3.1 Approximately Semigroups and Ideals

Definition 3.10. Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space and "." be a binary operation defined on X. $S \subset X$ is called an approximately semigroup in descriptive proximal relator space if the following properties are verified:

1. $x \cdot y \in \Phi^*S$, $\forall x, y \in S$.

2. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ property verify on $\Phi^*S, \forall x, y, z \in S$.

Let an approximately semigroup has approximately identity element $e \in \Phi^*S$ such that $x \cdot e = e \cdot x =$

 $x, \forall x \in S$. Then S is called an *approximately* $a \xrightarrow{B}$ *oid* in a descriptive proximal relator space.

Let $x \cdot y = y \cdot x$, $\forall x, y \in S$ property holds in Φ^*S . Then *S* is *commutative approximately semigroup* in descriptive proximal relator space.

Example 3.11.Let X be a digital image endowed with descriptive proximity relation δ_{Φ} and consists of 25 pixels as in Fig. 1.

<i>x</i> ₁₁	x_{12}	x_{13}	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₂₁	x_{22}	x_{23}	x_{24}	x_{25}
<i>x</i> ₃₁	x ₃₂	x ₃₃	x_{34}	x_{35}
<i>x</i> ₄₁	x_{42}	x_{43}	<i>x</i> ₄₄	x_{45}
x_{51}	x_{52}	x_{53}	<i>x</i> ₅₄	x_{55}

Figure 1: Digital image

A pixel x_{ij} is an element at position (i, j) (row and column) in digital image X. Let ϕ be a probe function that represent RGB colour of each pixel are given in Table 1.

Table 1. RGB codes of each pixel in Fig. 1.

	Red	Green	Blue		Red	Green	Blue
<i>x</i> ₁₁	204	204	204	<i>x</i> ₃₄	204	204	204
<i>x</i> ₁₂	51	153	255	<i>x</i> ₃₅	204	255	255
x_{13}	204	255	255	x_{41}	51	153	255
<i>x</i> ₁₄	204	204	204	<i>x</i> ₄₂	204	204	204
<i>x</i> ₁₅	51	153	255	<i>x</i> ₄₃	51	153	255
<i>x</i> ₂₁	0	102	153	<i>x</i> ₄₄	204	204	204
<i>x</i> ₂₂	102	255	255	<i>x</i> ₄₅	204	204	204

<i>x</i> ₂₃	0	102	153	<i>x</i> ₅₁	51	153	255
<i>x</i> ₂₄	0	102	102	<i>x</i> ₅₂	204	255	255
<i>x</i> ₂₅	204	204	204	x_{53}	204	204	204
<i>x</i> ₃₁	204	204	204	<i>x</i> ₅₄	0	51	255
<i>x</i> ₃₂	0	51	255	<i>x</i> ₅₅	102	255	255
<i>x</i> ₃₃	0	102	102				

Let

$$\cdot : X \times X \to X$$

$$(x_{ij}, x_{kl}) \mapsto x_{ij} \cdot x_{kl} = x_{pr}$$

where $p = \min\{i, k\}$ and $r = \min\{j, l\}$

be a binary operation on X and

 $A = \{x_{21}, x_{22}, x_{32}, x_{33}\}$ be a subimage (subset) of X.

We can compute the descriptively upper approximation of A by using the Definition 3.2. $\Phi^*A = \{x_{ij} \in X : \delta_{\phi}A\}, \text{ where } Q(A) = \{\phi(x_{ij}) : x_{ij} \in A\}.$ Then $\phi(x_{ij}) \cap Q(A) \neq \emptyset$ such that $x_{ij} \in X$. From Table 1, we obtain

$$Q(A) = \{\phi(x_{21}), \phi(x_{22}), \phi(x_{32}), \phi(x_{33})\}$$
$$= \{(0,102,153), (102,255,255), (0,51,255), (0,102,102)\}$$

Hence we get

$$\Phi^*A = \{x_{21}, x_{22}, x_{23}, x_{24}, x_{32}, x_{33}, x_{54}, x_{55}\}$$

as shown in Fig. 2.

Figure 2: Φ^*A

Since

1. For all x_{ij} , $x_{kl} \in A$, $x_{ij} \cdot x_{kl} \in \Phi^*A$,

2. For all x_{ij} , x_{kl} , $x_{mn} \in A$, $(x_{ij} \cdot x_{kl}) \cdot x_{mn} = x_{ij} \cdot (x_{kl} \cdot x_{mn})$ property holds in Φ^*A ,

are satisfied, the subimage A of the digital image Xis indeed an approximately semigroup in descriptive proximity space (X, δ_{Φ}) with binary operation " \cdot ". Moreover, since $x_{ij} \cdot x_{kl} = x_{kl} \cdot$ x_{ij} , for all $x_{ij}, x_{kl} \in A$ property holds in Φ^*A , A is a commutative approximately semigroup.

Notice that in Example 3.11 proximal identity element is not unique. x_{33} and $x_{55} \in \Phi^*A$ have feature of a *proximal identity element*. So Adoes nothave an unique identity element and *A* is not a commutative approximately monoid.

Example 3.12. Let X be a digital image endowed with descriptive proximity relation δ_{Φ} and consists of 16 pixels as in Fig. 3.

<i>x</i> 11	<i>x</i> ₁₂	<i>x</i> 13	<i>x</i> ₁₄
x21	<i>x</i> ₂₂	<i>x</i> 23	x24
<i>x</i> ₃₁	X32	<i>X</i> 33	X34
<i>x</i> ₄₁	x42	X43	X44

Figure 3: Digital image X and $S \subset X$

A pixel x_{ij} is an element at position (i, j) (row and column) in X. Let ϕ be a probe function that represents RGB colour of each pixel are given in Table 2.

Table 2. RGB codes of each pixel in Fig. 3.

	Red	Green	Blue			Red	Green	Blue
<i>x</i> ₁₁	0	151	255	-	<i>x</i> ₃₁	0	151	255
<i>x</i> ₁₂	0	151	255		<i>x</i> ₃₂	103	183	255
<i>x</i> ₁₃	130	255	255		<i>x</i> ₃₃	121	212	211

r	200	204	255	Yat	205	205	216
л 14	200	204	233	×34	205	205	210
<i>x</i> ₂₁	170	153	170	x_{41}	130	205	255
<i>x</i> ₂₂	103	102	255	<i>x</i> ₄₂	202	210	187
<i>x</i> ₂₃	224	255	187	<i>x</i> ₄₃	121	212	211
<i>x</i> ₂₄	103	102	255	<i>x</i> ₄₄	200	230	255

Let

$$\therefore X \times X \to X$$
$$(x_{ij}, x_{kl}) \mapsto x_{ij} \cdot x_{kl} = x_{pr},$$
$$p = \min\{i, k\} and r = \min\{j, l\}$$

be a binary operation on X and

$$S = \{x_{21}, x_{23}, x_{24}, x_{32}, x_{34}, x_{42}, x_{43}\}$$

a subimage (subset) of X.

We can compute the descriptively upper approximation of *S* by using the Definition 3.2. $\Phi^*S = \{x_{ij} \in X : x_{ij}\delta_{\phi}S\}, \text{ where } Q(S) = \{\phi(x_{ij}) : x_{ij} \in S\}.$ Then $\phi(x_{ij}) \cap Q(S) \neq \emptyset$ such that $x_{ij} \in X$. From Table 2, we obtain:

$$Q(S) = \{\phi(x_{21}), \phi(x_{23}), \phi(x_{24}), \phi(x_{32}), \\ \phi(x_{34}), \phi(x_{42}), \phi(x_{43})\} \\ = \{(170, 170, 170), (224, 208, 187), \\ (103, 183, 255), (205, 205, 216), \\ (202, 210, 187), (121, 212, 211)\} \}$$

Hence we get

$$\Phi^*S = \{x_{21}, x_{22}, x_{23}, x_{24}, x_{32}, x_{33}, x_{34}, x_{42}, x_{43}\}$$

as shown in Fig. 4.

<i>x</i> 11	<i>x</i> ₁₂	<i>x</i> 13	<i>x</i> ₁₄
X21	<i>x</i> ₂₂	x ₂₃	<i>x</i> 24
<i>x</i> ₃₁	X32	X33	X34
<i>x</i> ₄₁	X ₄₂	X43	X44

Figure 4: Φ^*S

by Definition 3.10., since

1. For all x_{ij} , $x_{kl} \in S$, $x_{ij} \cdot x_{kl} \in \Phi^*S$,

2. For all x_{ij} , x_{kl} , $x_{mn} \in A$, $(x_{ij} \cdot x_{kl}) \cdot x_{mn} = x_{ij} \cdot (x_{kl} \cdot x_{mn})$ property holds in Φ^*S ,

are satisfied, the subimage *S* of the digital image *X* is indeed an approximately semigroup in descriptive proximity space (X, δ_{Φ}) with binary operation " \cdot ". Moreover, since $x_{ij} \cdot x_{kl} = x_{kl} \cdot x_{ij}$, for all $x_{ij}, x_{kl} \in S$ property holds in Φ^*S, S is a commutative approximately semigroup.

Definition 3.13.Let *T* be a nonempty subset of approximately semigroup *S* in $(X, \mathcal{R}_{\delta_{\phi}})$. *T* is called an approximately subsemigroup of *S* if $TT \subseteq \Phi^*T$. In other words, *T* is an approximately semigroup with the binary operation of *S* restricted to *T*.

Example 3.14. From Example 3.12., let we consider approximately semigroup $S = \{x_{21}, x_{23}, x_{24}, x_{32}, x_{34}, x_{42}, x_{43}\}$ in descriptive proximity space (X, δ_{Φ}) with binary operation " \cdot ".

Let $T = \{x_{21}, x_{23}, x_{32}\}$ be a subimage (subset) of $S \subset X$. We can compute the descriptively upper approximation of T by using the Definition 3.2. $\Phi^*T = \{x_{ij} \in X : x_{ij}\delta_{\phi}T\}$, where $Q(T) = \{\phi(x_{ij}) : x_{ij} \in T\}$. Then $\phi(x_{ij}) \cap Q(T) \neq \emptyset$ such that $x_{ij} \in X$. By Table 2, we obtain

$$Q(T) = \{\phi(x_{21}), \phi(x_{23}), \phi(x_{32})\} \\ = \{(170, 170, 170), (224, 208, 187), (103, 183, 255)\}.$$

Then we get $\Phi^*T = \{x_{21}, x_{22}, x_{23}, x_{32}\}$. By Definition 3.13., since $TT \subseteq \Phi^*T$ property holds, the subimage T of the digital image $S \subset X$ is indeed an approximately subsemigroup in descriptive proximity space (X, δ_{Φ}) with binary operation " \cdot ".

Definition 3.15. Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space, *S* be a approximately semigroup and $\phi \neq I \subseteq S$.

(1) *I* is called an approximately left ideal of *S* if Φ^*I be a left ideal of *S*, that is $S(\Phi^*I) \subseteq \Phi^*I$.

(2) *I* is called an approximately right ideal of *S* if Φ^*I is a right ideal of *S*, that is $(\Phi^*I)S \subseteq \Phi^*I$.

(3) *I* is called an approximately bi-ideal of *S* if Φ^*I is a bi-ideal of *S*, that is $(\Phi^*I)S(\Phi^*I) \subseteq \Phi^*I$.

Example 3.16. From Example 3.12., let we consider approximately semigroup $S = \{x_{21}, x_{23}, x_{24}, x_{32}, x_{34}, x_{42}, x_{43}\}$ in descriptive proximity space (X, δ_{Φ}) with binary operation " \cdot ".

Let $I = \{x_{21}, x_{23}, x_{24}, x_{32}, x_{42}\}$ be a subimage (subset) of $S \subset X$. We can compute the descriptively upper approximation of I by Definition 3.2. $\Phi^*I = \{x_{ij} \in X : x_{ij}\delta_{\phi}I\}$, where $Q(I) = \{\phi(x_{ij}) : x_{ij} \in I\}$. Then $\phi(x_{ij}) \cap Q(I) \neq \emptyset$ such that $x_{ij} \in X$. From Table 2, we obtain

 $Q(I) = \{\phi(x_{21}), \phi(x_{23}), \phi(x_{24}), \phi(x_{32}), \phi(x_{42})\}$ = \{(170,170,170), (224,208,187), (103,183,255), (202,210,187)\}

Then we get $\Phi^*I = \{x_{21}, x_{22}, x_{23}, x_{24}, x_{32}, x_{42}\}$. By Definition 3.15., since $S(\Phi^*I) \subseteq \Phi^*I$ property holds, the subimage I is indeed an approximately left ideal of the digital image S in descriptive proximity space (X, δ_{Φ}) with binary operation " \cdot ". Furthermore, since S is a commutative approximately semigroup, we observe that I is also approximately right and bi-ideal of S.

Example 3.17.By Examples 3.12. and 3.14., let we consider approximately subsemigroup $T = \{x_{21}, x_{23}, x_{32}\} \subset S$ in descriptive proximity space (X, δ_{Φ}) with binary operation " \cdot ".

By Example 3.14. we know that descriptively upper approximation of T is $\Phi^*T = \{x_{21}, x_{22}, x_{23}, x_{32}\}$. Then by Definition 3.15., since $S(\Phi^*T) \subseteq \Phi^*T$ property holds, the approximately subsemigroup (subimage) T is indeed an approximately left ideal of the digital image S in descriptive proximity space (X, δ_{Φ}) with binary operation " \cdot ". Furthermore, since S is a commutative approximately semigroup, we observe that T is also approximately right and bi-ideal of S. In Example 3.17., we observe that the approximately subsemigroup (subimage) T is indeed an approximately left ideal of S in (X, δ_{Φ}) .

Example 3.18. From Example 3.12., let we consider approximately semigroup $S = \{x_{21}, x_{23}, x_{24}, x_{32}, x_{34}, x_{42}, x_{43}\}$ in descriptive proximity space (X, δ_{Φ}) with binary operation " · ".

Let $K = \{x_{34}, x_{43}\}$ be a subimage (subset) of $S \subset X$. We can compute the descriptively upper approximation of K by using the Definition 3.2. $\Phi^*K = \{x_{ij} \in X : x_{ij}\delta_{\phi}K\}$, where Q(K) =

 $\{\phi(x_{ij}): x_{ij} \in K\}$. Then $\phi(x_{ij}) \cap Q(K) \neq \emptyset$ such that $x_{ij} \in X$. From Table 2, we obtain

$$Q(K) = \{\phi(x_{34}), \phi(x_{43})\} \\ = \{(205, 205, 216), (121, 212, 211)\}$$

Then we get $\Phi^*K = \{x_{34}, x_{33}, x_{43}\}$. By Definition 3.13., since $KK \subseteq \Phi^*K$ property holds, the subimage K of the digital image $S \subset X$ is indeed an approximately subsemigroup in (X, δ_{Φ}) with binary operation " \cdot ". But since

 $S(\Phi^*K)\{x_{21}, x_{22}, x_{23}, x_{24}, x_{32}, x_{33}, x_{34}, x_{42}, x_{43}\} \Box \Phi^*K$

subimage *K* is not an approximately left ideal (right or bi-ideal) of *S* in (*X*, δ_{Φ}).

In addition, although a subimage (subset) $J = \{x_{24}, x_{42}\}$ of $S \subset X$ is also an approximately subsemigroup of S, it is not an approximately left ideal (right or bi-ideal) of S in (X, δ_{Φ}) .

Theorem 3.19Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space and $S \subseteq X$.

(1) If S is a semigroup in X, then S is an *approximately semigroup* in descriptive proximal relator space.

(2) If *I* is a left (right, bi) ideal of *approximately semigroup S*, then *I* is an *approximately* left (right, bi) ideal of *S*.

Proof. (1) Suppose that $S \subseteq X$ be a semigroup. From Theorem 3.5.(1), $\emptyset \neq S \subseteq \Phi^*S$. Hence $x \cdot y \in \Phi^*S$, $\forall x, y \in S$ and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ property holds in Φ^*S , $\forall x, y, z \in S$. Then S is an *approximately semigroup* in descriptive proximal relator space.

(2) Suppose that *I* be a left ideal of *approximately* semigroup *S*, that is $SI \subseteq I$. We know that $S \subseteq \Phi^*S$. Hence, by Theorems 3.5.(5) and 3.8.,

$$S(\Phi^*I) \subseteq (\Phi^*S)(\Phi^*I) = \Phi^*(SI) \subseteq \Phi^*I.$$

As a result Φ^*I is a left ideal of *approximately* semigroupS, and so I is an *approximately* left ideal of S. We can easily prove that I is a *approximately* right ideal of S. Therefore, I is an *approximately* left, right or bi-ideal of S.

The Theorem 3.19. prove that the concept of *approximately semigroup* (left, right or bi-ideal) is a generalized concept of a semigroup (left, right or bi-ideal).

Theorem 3.20.Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space and $S \subseteq X$ be a semigroup and $A \subseteq S$.

(1) If A is a subsemigroup of S, then $\emptyset \neq \Phi_*A$ is a subsemigroup of S.

(2) If *I* is a left (right, bi) ideal of *S*, then $\emptyset \neq \Phi_*I$ is a left (right, bi) ideal of Φ_*S .

Proof. (1) Suppose that A be a subsemigroup of S, then by Theorems 3.9. and 3.5.(4),

$$(\Phi_*A)(\Phi_*A) \subseteq \Phi_*(AA) \subseteq \Phi_*A.$$

Consequently $\emptyset \neq \Phi_*A$ is a subsemigroup of $S \subseteq X$.

(2) Suppose that *I* is a left ideal of *S*, that is $SI \subseteq I$. Then, by Theorems 3.9. and 3.5.(4),

$$(\Phi_*S)(\Phi_*I) \subseteq \Phi_*(SI) \subseteq \Phi_*I.$$

As a result $\emptyset \neq \Phi_*I$ is a left ideal of Φ_*S . The proofs of other cases can be written in a similar processes.

Theorem 3.21.Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space and $S \subseteq X$. If I is a bi-ideal of S, then it is an approximately bi-ideal of S.

Proof. Suppose that I is a bi-ideal of S. Then, by Theorems 3.8. and 3.5.(5),

$$(\Phi^*I)(S)(\Phi^*I) \subseteq (\Phi^*I)(\Phi^*S)(\Phi^*I) \subseteq \Phi^*(ISI)$$
$$\subseteq \Phi^*I.$$

As a result, by Theorem 3.20.(2), Φ^*I is a bi-ideal of *S*, that is, *I* is an *approximately* bi-ideal of *S*.

Theorem 3.22.Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space and $S \subseteq X$. If I is a bi-ideal of S, then $\emptyset \neq \Phi_*I$ is a bi-ideal of Φ_*S .

Proof. Suppose that I is a bi-ideal of S. Then, by Theorems 3.9 and 3.5.(6),

$$(\Phi_*I)(\Phi_*S)(\Phi_*I) \subseteq \Phi_*(ISI) \subseteq \Phi_*I.$$

Consequently, by Theorem 3.20.(2), $\emptyset \neq \Phi_*I$ is a biideal of Φ_*S .

Theorem 3.23.Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space and $S \subseteq X$. If I and J are right and left ideals of S, respectively, then

$$\Phi^*(IJ) \subseteq (\Phi^*I) \cap (\Phi^*J).$$

Proof. Suppose that *I* and *J* are right and left ideals of *S*, respectively. Then $IJ \subseteq IS \subseteq I$ and

 $IJ \subseteq SJ \subseteq J$. Thus $IJ \subseteq I \cap J$. As a result, by Theorem 3.5.(5) and (7),

$$\Phi^*(IJ) \subseteq \Phi^*(I \cap J) \subseteq (\Phi^*I) \cap (\Phi^*J).$$

Theorem 3.24.Let $(X, \mathcal{R}_{\delta_{\phi}})$ be descriptive proximal relator space and $S \subseteq X$. If I and J are right and left ideals of S, respectively, then

$$\Phi_*(IJ) \subseteq (\Phi_*I) \cap (\Phi_*J).$$

Proof. Suppose that I and J are right and left ideals of S, respectively. Then $IJ \subseteq IS \subseteq I$ and $IJ \subseteq SJ \subseteq J$. Thus $IJ \subseteq I \cap J$. Consequently, by Theorem 3.5.(3) and (4),

$$\Phi_*(IJ) \subseteq \Phi_*(I \cap J) \subseteq (\Phi_*I) \cap (\Phi_*J).$$

Acknowledgement

This research has been financially supported by the Scientific Research Fund of Adıyaman University under grant no. FEFMAP/2015-0009.

References

- Clifford A. and Preston G., 1964. The Algebraic Theory of Semigroups, American Mathematical Society, Providence, R.I., xv+224pp.
- Efremovic V.A., 1951. Infinitesimal spaces, *Doklady Akad. Nauk SSSR (N.S.)*, **76**, 341-343.
- Efremovid.A., 1952. The geometry of proximity I, *Mat. Sb.* (*N.S.*), **31(73)** (1), 189-200.
- Kova M., 2011. A new causal topology and why the universe is co-compact, *arXive:1112.0817[math-ph]* 1-15arXiv:1112.0817.
- Lodato M., 1962. On topologically induced generalized proximity relations, Ph.D. thesis, Rutgers University.
- Naimpally S.A. and Peters J.F., 2013. Topology with Applications, Topological Spaces via Near and Far. World Scientific, Singapore.
- Peters J.F., 2013. Near sets: An introduction, *Math. in Comp. Sci.*, **7 (1)**, 3-9.
- Peters J.F. and Naimpally S.A., 2012. Applications of near sets., *Notices Amer. Math. Soc.*, **59 (4)**, 536-542.
- Peters J.F., 2016. Proximal relator spaces, *Filomat*, **30 (2)**, 469-472.
- Peters J.F, İnan E. and Öztürk M.A., 2015. Exactness of Proximal Groupoid Homomorphisms, *Adıyaman University Journal of Science*, **5 (1)**, 1-13.
- Peters J.F., İnan E. and Öztürk M.A., 2014. Spatial and descriptive isometries in proximity spaces, *General Mathematics Notes*, **21** (2), 1-10.
- Szaz A., 1987. Basic tools and mild continuities in relator spaces, *Acta Math. Hungar.*, **50**, 177-201.