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Abstract  

In literature, there are many papers on the sums of element orders of  finite groups. In this study we 

deal with the cases in symmetric groups.  Our main aim is to investigate the sums of element orders in 

symmetric groups and to give some properties of the sum of element orders in symmetric group. 

Moreover, we derive the formula for such sums.  

 

Simetrik Gruplarda Eleman Mertebelerinin Toplamları 
 

 
      Anahtar kelimeler 

Sonlu grup; 
Simetrik gruplar; 

Eleman mertebelerinin 

toplamı; 

Eleman mertebesi. 

 

Özet 

Literatürde sonlu grupların eleman mertebelerinin toplamı üzerine birçok çalışma yer almaktadır. Bu 

çalışmada simetrik gruplardaki durumlar üzerinde durulacaktır. Amacımız simetrik gruplarda eleman 

mertebelerinin toplamını incelemek ve simetrik gruplarda eleman mertebelerinin toplamlarının bazı 

özelliklerini vermektir. Ayrıca, bu toplamlar için bir formül üretmektir. 
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1. Introduction 

Sums of element orders in finite groups is an 

interesting subject, which was studied in varies 

papers (see Amiri (2009), Amiri and Amiri (2011), 

Herzog et al. (2018)). Our main starting point is given 

by the papers H. Amiri et al. (2009), H. Amiri and 

S.M.J. Amiri (2011) which studied on the sums of 

element orders in finite groups. Given a finite group 

𝐺, we denote the sum of element orders in 𝐺 by 

𝜓(𝐺). Historically, the most enlightening in this area 

is due H. Amiri, S.M.J. Amiri and I.M. Isaacs, who 

introduced the function 𝜓(𝐺) on 𝐺  for a finite 

group 𝐺. Amiri et al. (2009) and proved that 𝜓(𝐺) <

𝜓(𝐶𝑛), where 𝐶𝑛 denotes a cycle group of order 𝑛. 

In Herzog et al. (2018), M. Herzog, P. Longobardi and 

M. Maj studied to find an exact upper bound for the  

sums of element orders in non-cyclic finite groups. 

Let 𝑆𝑛 denote the symmetric group of degree 𝑛. In 

this note we will focus on the study of 𝜓(𝑆𝑛). Our 

goal is to derive an explicit formula for the sum of 

element orders in 𝑆𝑛. 

 

2. Preliminaries 

This section contains necessary definitions and 

preliminary results. 

Notice that an arbitrary permutation 𝜎 ∈ 𝑆𝑛 can be 

written as a product of disjoint cycles. Suppose that 

𝜎 has cycles of length 𝑝1, 𝑝2, … , 𝑝𝑟, where 𝑝1 ≥

𝑝2 ≥ ⋯ ≥ 𝑝𝑟 , ∑ 𝑝𝑖
𝑟
𝑖=1 = 𝑛 and 1’s in this list are 

included for fixed points. The sequence 𝑝 =

(𝑝1, 𝑝2, … , 𝑝𝑟) is said to be the cycle type of 𝜎. For 

instance, if 𝜎 ∈ 𝑆9 and 𝜎 = (1345)(278),  then 𝜎 
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has cycle type (4,3,1,1). If 𝜎 is a 𝑘-cycle in 𝑆𝑛, where 

𝑘 ≤ 𝑛, then the cycle type of 𝜎 is (𝑘, 1, … ,1), and 

the number of 1’s in the sequence is 𝑛 − 𝑘. The 

order of a permutation expressed as a product of 

disjoint cycles is the least common multiple of the 

lengths of the cycles, namely,  

                     𝑜(𝜎) = lcm(𝑝1, 𝑝2, … , 𝑝𝑟).               (2.1) 

Let 𝑛 be a positive integer, a sequence of positive 

integers 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑟) such that 𝑝1 ≥ 𝑝2 ≥

⋯ ≥ 𝑝𝑟  and ∑ 𝑝𝑖
𝑟
𝑖=1 = 𝑛 is called a partition of 𝑛. It 

is well-known that there is a bijection between the 

set of all partitions of 𝑛 and the set of the conjugacy 

classes of 𝑆𝑛. 

Lemma 2.1. Any two elements of 𝑆𝑛 with the same 

cycle type are in the same conjugacy class. 

Lemma 2.2. Let 𝐺 be a group. Then 𝐺 is the disjoint 

union of its conjugacy classes. 

Let 𝑠 be the number of distinct conjugacy classes of 

𝐺. We suppose that the numbers of elements in the 

conjugacy classes are 𝑛1, 𝑛2, … , 𝑛𝑠. These integers 

satisfy the class equation 

|𝐺| = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑠. 

The number of partitions of a positive number 𝑛 is 

equal to the number of conjugacy classes of 𝑆𝑛. 

Lemma 2.3. In 𝑆𝑛, let 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑟) be a 

partition of 𝑛 such that for 1 ≤ 𝑖 ≤ 𝑛, 𝑘𝑖 of the parts 

are 𝑖. Then, the number of permutations having 

cycle type 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑟) in 𝑆𝑛 is calculated  by 

the following formula 

                        𝐴𝑝 = ∏
𝑛!

(𝑘𝑖)!𝑖𝑘𝑖

𝑛
𝑖=1 . 

This lemma will be an important ingredient in the 

proof of our main result. For more details we refer 

to (Gorenstein 1968, Herstein 1958, Herzog et al. 

2018). 

 

3. Main Results 

 

This section is devoted to the description of the sum 

of element orders in symmetric group 𝑆𝑛. An explicit 

formula for 𝜓(𝑆𝑛) will be given by the following 

theorem. 

Theorem 3.1. In 𝑆𝑛, let 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑟) be a 

partition of 𝑛 and 𝐴𝑝 denotes the number of 

permutations which have cycle type 𝑝. Then 

𝜓(𝑆𝑛) =  𝐴𝑝. lcm(𝑝1, 𝑝2, … , 𝑝𝑟). 

Proof. The function 𝜓(𝑆𝑛) is defined as 

𝜓(𝑆𝑛) = ∑ 𝑜(𝜎)

𝜎∈𝑆𝑛

, 

where 𝑜(𝜎) denotes the order of 𝜎 ∈ 𝑆𝑛. The 

number of all permutations with cycle type 𝑝 =

(𝑝1, 𝑝2, … , 𝑝𝑟) is calculated by (2.1). Hence, the sum 

of orders of permutations with cycle type 𝑝 =

(𝑝1, 𝑝2, … , 𝑝𝑟) is 𝐴𝑝. lcm(𝑝1, 𝑝2, … , 𝑝𝑟). Considering 

for each partition 𝑝 of 𝑛,  we obtain 𝜓(𝑆𝑛) which is 

the sum of orders of all permutations in 𝑆𝑛, that is, 

we get 

𝜓(𝑆𝑛) =  𝐴𝑝. lcm(𝑝1, 𝑝2, … , 𝑝𝑟). 

Therefore, the proof of theorem completes.          

                                                                                          □ 

Now, we can see some information on partitions of 

𝑛, the sizes of conjugacy classes and the element 

orders of 𝑆𝑛 for the cases 𝑛 = 3 and 𝑛 = 4. 

Moreover, we see how the formula is applied to the 

cycle sizes. 

For 𝑛 = 3, 

Table 1. The case of 𝑛 = 3 

Partition Elements with 

the cycle type 

Size of 

conjugacy 

class 

Element order 

1+1+1 (1) 𝐴(1,1,1) = 1 lcm(1,1,1) = 1 

2+1 (12), (13), (23) 𝐴(2,1) = 3 lcm(2,1) = 2 

3 (123), (132) 𝐴(3) = 1 lcm(3) = 3 

 

𝜓(𝑆3) = 𝐴(1,1,1). lcm(1,1,1) + 𝐴(2,1). lcm(2,1) 

+𝐴(3). lcm(3)                                   

= 1.1 + 3.2 + 2.3                           

  = 13.                                                   
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For 𝑛 = 4, 

Table 2.  The case of 𝑛 = 4 

Partition Elements with 

the cycle type 

Size of 

conjugacy 

class 

Element order 

1+1+1+1 (1) 𝐴(1,1,1,1)

= 1 

lcm(1,1,1,1) = 1 

2+1+1 (12),(13),(14), 

(23),(24),(34) 

𝐴(2,1,1) = 6 lcm(2,1,1) = 2 

2+2 (12)(34), 

(13)(24), 

(14)(23) 

𝐴(2,2) = 3 lcm(2,2) = 2 

3+1 (123), (132), 

(234), (243), 

(124), (142), 

(134), (143) 

𝐴(3,1) = 8 lcm(3,1) = 3 

4 (1234), (1243), 

(1324), (1342), 

(1423), (1432) 

𝐴(4) = 6 lcm(4) = 4 

 

𝜓(𝑆4) = 𝐴(1,1,1,1). lcm(1,1,1,1)                      

                   +𝐴(2,1,1). lcm(2,1,1) + 𝐴(2,2). lcm(2,2) 

      +𝐴(3,1). lcm(3,1) + 𝐴(4). lcm(4) 

  = 1.1 + 6.2 + 3.2 + 8.3 + 6.4 

= 67.                                             

Proposition 3.2. Let 𝑆𝑛 be symmetric group of 

degree 𝑛 for 𝑛 > 3. Then, 

𝜓(𝑆𝑛) <
|𝑆𝑛|2

2
. 

Proof. Since 𝑆𝑛 for 𝑛 > 3 is non-cyclic and 2 is the 

smallest prime divisor of |𝑆𝑛|, this implies that 

𝑜(𝑥) ≤
|𝑆𝑛|

2
 for each 𝑥 ∈ 𝑆𝑛. But 𝑜(1) = 1, so 

𝜓(𝑆𝑛) ≤ (|𝑆𝑛| − 1) (
|𝑆𝑛|

2
) + 1 <

|𝑆𝑛|2

2
.  

                                                                                          □ 

Recall that let 𝑛 be a positive number, the Euler 

function 𝜑(𝑛) is the number of integers 𝑘 such that 

1 ≤ 𝑘 < 𝑛 and (𝑘, 𝑛) = 1. We can calculate the 

Euler function 𝜑(𝑛) by the following formula 

                   𝜑(𝑛) = 𝑛. ∏ (1 −
1

𝑝
)

𝑝|𝑛,𝑝 prime

.            (3.2) 

Theorem 3.3. Let 𝑆𝑛 be symmetric group of degree 

𝑛. Then, 

(i) For 𝑛 > 3, 𝜓(𝑆𝑛) <
1

2
|𝑆𝑛| 𝜑(|𝑆𝑛|). 

(ii) For 𝑛 ≤ 3, 𝜓(𝑆𝑛) >
1

2
|𝑆𝑛| 𝜑(|𝑆𝑛|). 

Proof.  

(i) By Proposition 3.2, 

𝜓(𝑆𝑛) <
|𝑆𝑛|2

2
<

1

2
|𝑆𝑛| 𝜑(|𝑆𝑛|). 

(ii) It is clear to see for the cases 𝑛 = 1,2,3. 

                                                                                          □ 

Lemma 3.4. Let |𝑆𝑛| be the order of symmetric 

group of degree 𝑛 with the largest prime divisor 𝑝. 

Then, 

 𝜑(|𝑆𝑛|) =
1

𝑝
 |𝑆𝑛|. 

Proof. Let |𝑆𝑛| = 𝑝1
𝑚1𝑝2

𝑚2 … 𝑝𝑘
𝑚𝑘 where 𝑝𝑖’s are 

prime, 𝑚𝑖’s are positive integers and 𝑝1 = 2 < 𝑝2 <

⋯ < 𝑝𝑘 = 𝑝. Using (3.2), the Euler’s function 

𝜑(|𝑆𝑛|) satisfies the following equality:  

𝜑(|𝑆𝑛|) = |𝑆𝑛| (1 −
1

2
) (1 −

1

3
) … (1 −

1

𝑝
) 

= |𝑆𝑛|
1

2

2

3
…

𝑝 − 1

𝑝
              

=
1

𝑝
|𝑆𝑛|.                               

                                                                                          □ 

Proposition 3.5. Let 𝐶|𝑆𝑛| be the cyclic group of 

order |𝑆𝑛|, where 𝑆𝑛 is a symmetric group of degree 

𝑛. Then, 

𝜓(𝐶|𝑆𝑛|) >
1

𝑝
|𝑆𝑛|2. 

Proof. It is clear that 𝜓(𝐶|𝑆𝑛|) > |𝑆𝑛|𝜑(|𝑆𝑛|). By 

Lemma 3.4, we have  
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𝜓(𝐶|𝑆𝑛|) > |𝑆𝑛|
1

𝑝
|𝑆𝑛| =

1

𝑝
|𝑆𝑛|2, 

as required. 

                                                                                          □ 

Theorem 3.6. Let 𝑆𝑛 be the symmetric group of 

degree 𝑛 for 𝑛 > 3. Then, 

𝜓(𝑆𝑛) < 𝜓(𝐶|𝑆𝑛|), 

where 𝐶|𝑆𝑛| denote the cyclic group of order |𝑆𝑛|. 

Proof. By Theorem 3.3 (i),  

𝜓(𝑆𝑛) <
|𝑆𝑛|2

2
< |𝑆𝑛|𝜑(|𝑆𝑛|) < 𝜓(𝐶|𝑆𝑛|). 

                                                                                        □ 
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