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Keywords Abstract
Asymptotic In this study, first, we present the concepts of strongly asymptotically 75 -equivalence, f-asymptotically
Equivalence; J$-equivalence, strongly f-asymptotically J5-equivalence for double sequences of sets. Then, we
J2-Convergence; investigated some properties and relationships among this new concepts. After, we present

Invariant Convergence;  5ymptotically J§ -statistical equivalence for double sequences of sets. Also we investigate relationships

Wijsman Convergence;  petween asymptotically 7§ -statistical equivalence and strongly f-asymptotically 7 -equivalence.
Modulus Function.

Gift Kiime Dizilerinin f-Asimptotik 75-Denkligi

Anahtar kelimeler Oz
Asimptotik Denklik; Bu calismada, ilk olarak, cift kiime dizilerinin kuvvetli asimptotik 75-denkligi, f-asimptotik 75-denkligi,
J-Yakinsaklik; kuvvetli f-asimptotik J¢-denkligi kavramlari tanimlandi. Daha sonra bu kavramlar arasindaki iligkiler
Invariant Yakinsaklik; e haz gzellikler incelendi. ikinci olarak, yine cift kiime dizileri igin asimptotik J¢ -istatistiksel denklik
Wijsman Yakinsaklik;  \ayram tanimlandi. Ayrica, asimptotik 79 -istatistiksel denklik kavrami ve kuvvetli f-asimptotik 79~
Modiils Fonksiyonu.  genkligi kavrami arasindaki iliskiler incelendi.
© Afyon Kocatepe Universitesi
1. Introduction and Definitions Kostyrko et al. (2000) defined 7 of subset of N

Statistical convergence and ideal convergence of (natural numbers) and investigated J-convergence

real numbers, which are of great importance in the with some properties and proved theorems about J-

theory of summability, are studied by many convergence. The idea of J,-convergence and some

mathematicians. Fast (1951) and Schoenberg
(1959), independently, introduced the concept of
statistical convergence and many authors studied
these concepts. Mursaleen and Edely (2009)
extended this concept to the double sequences.
Recently, the statistical convergence has been

properties of this convergence were studied by Das
et al. (2008). Nuray and Rhoades (2012) defined the
idea of statistical convergence of set sequence and
investigated some theorems about this notion and
important properties. Kisi and Nuray (2013) defined
Wijsman J-convergence of sequence of sets and
also examined some theorems about it. After,

extended to ideal convergence of real numbers and

. . . several authors extended the convergence of real
some important properties about ideal convergence

. . - numbers sequences to convergence of sequences of
have been investigated by many mathematicians. q g q

sets and investigated it's characteristic in
summability.
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Several authors have studied invariant convergent
sequences [see, Mursaleen (1983), Nuray and Savas
(1994), Pancaroglu and Nuray (2013a, 2013b, 2014),
Raimi (1963), Savas (1989a, 1989b), Savas and
Nuray (1993), Schaefer (1972) and Ulusu et al.
(2018)]. Nuray et al. (2011) defined the notions of
invariant uniform density of subsets E of N,
Js-convergence and investigated relationships
between J;-convergence and o-convergence also
Js-convergence and [V ],,-convergence. Tortop and
Diindar (2018) introduced J,-invariant convergence
of double set sequences. Akin studied Wijsman
lacunary J,-invariant convergence of double

sequences of sets.

Asymptotically equivalent and some properties of
equivalence are studied by several authors [see, Kisi
et al. (2015), Pancaroglu et al. (2013), Patterson
(2003), Savas (2013), Ulusu and Nuray (2013)].
Ulusu and Gille introduced the concept of
asymptotically 7;-equivalence of sequences of sets.
Recently, Dindar et al. studied on asymptotically

ideal invariant equivalence of double sequences.

Several authors define some new concepts and give
inclusion theorems using a modulus function f [see,
Khan and Khan (2013), Kiling and Solak (2014),
Maddox (1986), Nakano (1953), Pehlivan and
Fisher(1995)]. Kumar and Sharma (2012) studied J-
equivalent sequences using a modulus function f.
Kisi et al. (2015) introduced f-asymptotically -
equivalent set sequences. Akin and Diindar (2018)
and Akin et al. (2018) give definitions of f-
asymptotically J,; and Jg-statistical equivalence of
set sequences.

Now, we recall the basic concepts and some
definitions and notations (see, [Baronti and Papini
(1986), Beer (1985, 1994), Das et al. (2008), Diindar
et al. (2016, 2017), Fast (1951), Kostyrko et al.
(2000), Lorentz (1948), Marouf (1993), Mursaleen
(1983), Nakano (1953), Nuray et al. (2011, 2016),
Pancaroglu and Nuray (2014), Akin and Dindar
(2018), Pehlivan and Fisher (1995), Raimi (1963),
Tortop and Dindar, Ulusu and Diindar (2014) and
Wijsman (1964, 1966)]).

Let u = (ug) and v = (v;) be two non-negative

sequences. If limk? = 1, then they are said to be
k
asymptotically equivalent (denoted by u~v).

Let (Y, p) be a metric space, y €Y and E be any
non-empty subset of Y, we define the distance from
yto E by

d(y,E) = infp(y, e).

Let 0 be a mapping of the positive integers into
itself. A continuous linear functional ¢ on £.., the
space of real bounded sequences, is said to be an
invariant mean or a ¢ mean if and only if

1. ¢(u) = 0, when the sequence u = (u;) has
u =20 forall j,
2. ¢(i) =1, wherei = (1,1,1...),

3. ¢(ug(j)) = p(u), forallu € ...

The mapping ¢ is supposed to be one-to-one and
such that a™(j) # j forall positive integers j and m,
where ¢™(j) denotes the mth iterate of the
mapping ¢ at j. Hence, ¢ extends the limit
functional on c, the space of convergent sequences,
in the sense that ¢(u) = limu forallu €Ec.Ifgisa
translation mapping that is o(j) =j+1, the o
mean is often called a Banach limit.

Let (Y, p) be a metricspaceand E, F, E; and F; (i =
1,2,...) be non-empty closed subsets of Y.

Let L € R. Then, we define d(y; E;, F;) as follows:

d(y, E;)
_—, ¢ E;U F,
d(;E F) ={d@,Fy’ 2 & HiYh
L, yE ELU Fi'

LetE;, F; S Y.Ifforeachy €Y,

A
hrrlnaz |d(y; Eai(m)’Fai(m)) - Ll =0,
i=1

uniformly in m, then, the sequences {E;} and {F;}
are strongly asymptotically invariant equivalent of

. wvig .
multiple L, (denoted by E; ~ F;) and if L =1,

simply strongly asymptotically invariant equivalent.
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7 < 2N which is a family of subsets of N is called an
ideal, if the followings hold:

(i)Yo eJ, (ii) For each E,FE€J, EUFE€],
(iii) For each E € J and each F C E, we have F €
].

Let 7 € 2N be anideal. 7 € 2N is called non-trivial if
N & 7. Also, for non-trivial ideal and for eachn € N
if {n} € 7, then 7 € 2N is admissible ideal.

After that, we consider that 7 is an admissible ideal.
Let K € Nand

Sm = min|K N {o(n),0%(n), ...,a™ ()}

and
S = mrzlax|K Nn{o(n),c?(n),...,a™n)}|.

If the limits

V(K) = limpe. 2 and V(K) = limpy o 22

exists then, they are called a lower o&-uniform
density and an upper g-uniform density of the set
K, respectively. If V(K) =V(K), then V(K) =
V(K) = V(K) is called the o-uniform density of K.

Denote by J; the class of all K € N with V(K) = 0.
Itis clearly that 7, is admissible ideal.

If foreveryy >0, A, = {i: |x; — L| = y} belongs to
I, i-e., V(4,) = 0 then, the sequence u = (u;) is
said to be J;-convergent to L. It is denoted by 7, —
limu; = L.

Let {E;} and {F;} be two sequences. If for every y >
0 and foreachy €Y,

Ay, ={i:|d(y; E;, F;) — L] =2 v}

belongs to J,, that is, V(A4;,) =0 then, the
sequences {E;} and {F;} are asymptotically J-
invariant equivalent or asymptotically J5-
equivalent of multiple L. In this instance, we write

Wy,
E; ~ F;and if L = 1, simply asymptotically J-
invariant equivalent.

If following conditions hold for the function
f:[0,00) = [0,°°), then it is called a modulus
function:

1. f(u) =0ifandifonlyifu =0,
2. flutv) < f(w)+f(),

3. fis nondecreasing,

4. fis continuous from the right at 0.
This after, we let f as a modulus function.
The modulus function f may be unbounded (for
example f(u) =u?, 0 <q <1) or bounded (for
example f(u) = ﬁ).

Let {E;} and {F;} be two sequences. If for every y >
Oandforeachy €Y,

n
1
{TL € N—z |d(y, El'JFl') - Ll =Y E 70,
"=
then, {E;} and {F;} are strongly asymptotically  J-
invariant equivalent of multiple L (denoted by

wy,] .
E; ~ F) and if L=1,

asymptotically J,-equivalent.

simply  strongly

If for everyy > 0 and foreachy €Y,

{teN:f(ld; E;, F) = L)) 2 v} €T,
then, we say that the sequences {E;} and {F;} are

said to be f-asymptotically J-invariant equivalent of

L
Io

Wy (f)
multiple L (denoted by E; ~ F;) and if L=1
simply f-asymptotically J-invariant equivalent.

Let {E;} and {F;} be two sequences. If for every y >
O andforeachy €Y,

n
1
{n € N:EZ fUd(; Ep F) = L) 2 v{ € s
i=1

then, we say that the sequences {E;} and {F;} are
said to be strongly f-asymptotically J-invariant

, , A
equivalent of multiple L (denoted by E; ~ F)

and if L = 1, simply strongly f-asymptotically J-
invariant equivalent.

Let {E;} and {F;} be two sequences. If for every y >
O andforeachy €Y,

1
fnen—iismldo B R - Lzl zy]es,

then, we say that the sequences {E;} and {F;} are

asymptotically J-invariant statistical equivalent of
Wi (S)

multiple L (denoted by E; ~ F;) and if L =1,

simply statistical

asymptotically  J-invariant

equivalent.
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Let J, be a nontrivial ideal of N X N. It is called
strongly admissible ideal if {k} X N and N X {k}
belong to J, for each k € N. This after, we let J, as
a strongly admissible ideal in N X N.

If we let a ideal as a strongly admissible ideal then,
it is clear that it is admissible also.

Let
79 ={E cNxN:(3 i(E) e N)(r,s = i(E) > (r,5) € E)}.

It is clear that 72 is a strongly admissible ideal. Also,
it is evidently J, is strongly admissible if and only if
79 € 7,.

Let (Y,p) be a metric space and y = (y;;) be a
sequence inY. If foranyy > 0,

A(y) ={(i,)) e NXN:p(y;;,L) =y} €T,

then, it is said to be J,-convergent to L. In this
instance, y is J,-convergent and we write

i,joeo

Let E € N X N and

Skt rrgg.nIE N {(a(@), (), (2@, 02()), ..., (@™ (@), a* (N}
and

Skt n}gXIE N {(a(@®),0()), (62D, 52()), ..., (@™ (@), a* (]I
If the limits

V_Z(E): = im0 Sk

Vo (E): = limyp, oo 22 _—

e
exists then V,(E) is called a lower and V,(E) is
called an upper o-uniform density of the set E,
respectively. If V,(E) = V,(E) holds then, V,(E) =
Vo(E) = V,(E) is called the g-uniform density of E.

Denote by J§ the class of all ES N XN with
V,(E) =0.

This after, let (Y, p) be a separable metric space and

Ej, Fij, E, F be any nonempty closed subsets of Y.

If foreachy €Y,

mk
" 1 —
A D A0 ) = 40.E)
i,j=1,1

uniformly in s,t then, the double sequence {E;;} is
said to be invariant convergentto E in Y.

If for everyy > 0,

AW, y) ={@): 14, Ej) —d(y,E)| 2y} € T7

thatis, V,(A(y,y)) = 0, then, the double sequence
{E;j} is said to be Wijsman J,-invariant convergent

or 76,’,2-convergent to E, In this instance, we write
E;j = E(Jy,) and by J, we will denote the set of
all Wijsman J§-convergent double sequences of
sets.

For non-empty closed subsets E;;, F;; of Y define
d(y; Eyj, Fy;) as follows:

(d JE;;
40 By Fy) = { F
kL , y € EU U FU

Lemma 1. [Pehlivan and Fisher, 1995]

let 0<y<l1. each

f <2f(My~u

Thus,  for uz=y,

2. f-Asymptotically 35-Equivalence of Double
Sequences of Sets

Definition 2.1 If foreveryy > 0 and eachy €Y,

1 mk )
i,j=1,1
then, double sequences {E;;} and {Fj;} are said to
be strongly asymptotically J,-invariant equivalent of
(Wye]
~ FL]) and if L = 1,
simply strongly asymptotically 7§ -equivalent.

multiple L (denoted by Ej;

Definition 2.2 If foreveryy > 0 and eachy €Y,
{(,)) ENXN:f(|d(y; Eij, Fij) — L)) =2 v} €T5

then, the double sequences {E;;} and {F;;} are said
to be f-asymptotically J,-invariant equivalent of

Wig ()
multiple L (denoted by E;; ~ F;) and if

L =1, simply f-asymptotically 75 -equivalent.

Definition 2.3 If foreveryy > 0 and eachy €Y,
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mk

1

{(m, R ENXN— " f(d(y; By Fy) — L) = y} e
i,j=1,1

then, the double sequences {E;;} and {F;;} are said

to be strongly f-asymptotically J5-equivalent of

;e (1]

multiple L (denoted by E;; ~ Fj;)andif L =1,

simply strongly f-asymptotically 75 -equivalent.
Theorem 2.1 Let 0 < § <1 and y > 0 such that
f(z) <yfor0 <z <46.Then, we have

Wyg] Wy (F)]
Eij ~ Fl] 4 El] FU
[Wig]
Proof. Let Ex; ~ Fyjandy > 0.Select0 < 4§ <1
such that f(z) <y for 0 <z < 4. Then, for each

x € X andfors,t = 1,2, ..., we have

1 mk
ﬂ Z f(|d(y; Ea‘i(s)o'j(t)' Fo—i(s)g‘j(t)) - L|)

i,j=1
1 mk
= ﬂ Z f(|d(y' Eai(s)aj(t)'Fai(S)aj(t)) - L|)
ij=11

|d(y;Eai(s)gJ'(t)'Fai(s)ai(t))_L|s‘Y
mk
1 2
+ —_—
mk L
ij=1,1
|d(y;Ecri(s)ai(t)’Fcri(s)crj(t))_L|>5

fd@; Eai(s)a/(t)' Bai(s)o'f(t)) —L)

and so by Lemma 1

m,k
1
ik Z FU4; Esicyoicey Foicyoicn) — LI

ij=1,1

2f(1H)_ 1
<vr+ 5o Z |43 Esigsyoicey Foisyoice) = LI
ij=11

uniformly in s, t. Thus, for every € > 0 and for each
y ey,

mk
1
{(mr k)ﬁ Z f(ld(y; Eoi(s)oi(t)'Foi(s)oj(c)) - Ll) = g}

ij=1,1

mk
c 1 ) (-7
= (m, k) ﬁ |d(y, Eo'i(s)o'j(t)' Fai(s)ai(t)) - Ll = Zf(l) »

ij=1,1

[Wiz]
uniformly in s,t. Since Eij ~ Fi]- then, it is clear
that the later set belongs to 7§ and thus, the first set

Wy ()]
belongs to J7. This proves that E;; ~  Fjj.

@

Theorem 2.2 Letz € Y. If lim —= = a > 0, then
Z—eo
Wys] ;e ()]

2
Eij ~ FU =4 El] ~ FU
Proof. The necessity is obvious from the Theorem
2.1

If lim L2 = ¢ > 0, then we have f(z) = az for all

Z—0oo
Wyg (1]
z =2 0. AssumethatE;;  ~

Y and fors,t = 1,2,... we have

F;j.Sinceforeachy €

mk

1
mk Z f(|d(y5 Eai(s)af(t)'Ffri(S)ffj(f)) - L|)

ij=11

m,k
1
Sy Z a(|d(y; Eigaicey Foicsyoi) — LI)

i,j=1,1
mk

1
-“ ﬂ Z |d(y; Eai(s)ﬂj(f)‘ Fo"k(s)o"j(t)) - Ll )

ij=11

and so, foreveryy >0

mk
1
{(m'k):ﬂ Z 14 Egicsyoiwy Faieyaiey) — L1 2 V}

i,j=11

mk
1
c {(m. D " FUA0: Bty Fosyoi) = LD 2 ay},

i,j=11

Wyg ()]

uniformlyin s, t. Since Ej Fyj, then, later set

belongs to J5. This proves that

Wig] ;g (1]
Eij ~ FU (= EU ~ FL]
Definition 2.4 If for every y > 0, § > 0 and for each

x € X,
1 , -
{(m, k)i i < m,j < ket |d(y; iy, i) =Ll 27} 2 6} €78

then, the double sequences {E;;} and {Fj;} are said
to be statistical
W5 (S)

equivalent of multiple L (denoted by E;; ~ F)

asymptotically  J,-invariant

and if L =1, simply asymptotically J,-invariant
statistical equivalent.

Theorem 2.3 For each y € Y, following holds:

Wy ()]

W, (S)
2
E k ] ~

ij=>Ekj ~ Fk]
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Wig ()]

Proof. Assume that Ej; Fij and y >0 be
given. Since for each y€Y and for
s,t=1,2,..
1 mk
mk Z f(ld; Esis)oi(ty Foitsyol ) —L|)

ij=1,1

1 mk
= ik z FUA(¥; Eigyoi ey Boitsyoicny) — LD

=11
|d(y;Eai(s)o'j(t)'Fai(s)o'j(t))_l‘|2y

1
2 ) i< mj <k |d(; Esioiwr Foiroin) = LI 2 VY
it follows that for every § > 0 and foreach y €Y,

1 i )
{(mv k)ﬁl{L =m,j < k: |d(y; Eg'i(s)gj(t)’Fg'i(s)g'j([)) - Ll = Y}l = m}

mk
1
< {(m' k)ﬂ Z f(ld(y' Ecri(s)crj(t)'Fai(s)aj(t)) - Ll) = 5}r

ij=1,1
Wy (F)]
uniformly in s, t. Since E;j Fij, then it is clear
the later set belongs to 7. Then, the first set
W5 (S)
belongs to 77 and so, E;; ~ Fj;.
Theorem 2.4 If f is bounded, then foreach y € Y,

Wy ()]

Eij ~

Wi, (S)
Fij (=14 El] ~ FU

Proof. Suppose that f is bounded and let
W5 (S)

E;; ~ Fjj.Because f is bounded then, there exists

a real number T > 0 such that supf(z) < T for all

y = 0. More using the truth, for s,t = 1,2, ... we

have

1 mk
mk Z fUd®; Egigsyoicy Foiyoiey) = L)
i,j=11
1 mk
" mk Z F1AW; Egigoygicey Foicsroi) — LI)

Q=11
|d(Y7Eai(s)ai(t)'pai(s)af(t))_L|Zy

mk

4 >
mk

ij=1,1

f(ld(yi Egi(s)ﬂj(t)'Fﬂi(s)aj(t)) - LD
|d(y;Eai(s)ai(t)’Fai(s)aj(t))_L|<y
T . ,
=< mk [{i<mj<k:|d(y; Egi50i ey Boigs)ole)) — L=y} + ).

(Wye ()]
uniformly in s, t. This proves that E;; ~  Fj;.
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